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DESIGN AND IMPLEMENTATION OF FLIP,

A LISP FORMAT DIRECTED LIST PROCESSOR




SECTION I

INTRODUCTION

BACKGROUND AND MOTIVATION

LISP [1] 1s a function oriented language. Transformations of
symbolic structures are achleved by applying functions to 1lists

and using the values of these functions. Functions may be defined
using composition, conditionals,6 recursion, etc., all of which

makes LISP a very powerful symbol-manipulating language. However,
this explicit function oriented nature of LISP sometimes makes it
difficult to express operations and transformations necessary for
the solution of certain types of problems. Basically, these are
operations which require locating certain substructures in a larger
stru~ture, either to ascertain their presence, or as 1s more usual,
to use them in assembling other structures.

Consider the transformation given by the following instructilons:
find 1p a 1list the first three atoms immediately preceding the
first occurrence of the atom A, and find the atom just after

the first occurrence of the atom B which follows these three
atoms; 1f such elements exist, exchange the position of the

three atoms and the one atom, delete the A and replace the B by C.

The LISP formallism cannot easily express a transformatlion of this
type, altaough such transformations can be individually programmed.
However, for applications that require many such transformations,
this can be tedious and time consuming for the programmer.
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A notation for expressing such transformations is the basis for a
number of programming languages that exlst today, such as CIMIT,
SNOBOL, AXLE, and METEOR [2] which was an earlier embedding of
such a feature in LISP.[5] Each of these notations provides a
formal method for selecting substrings t'rom a string, and then
indicating the structure of the transformed string. For example,
the above transformation written in COMIT is:

$+$3+A+34B+$1+$ = 140+44C+247

This 1s much easier to write and understand than the corresponding
LISP code for this transformation. However, in COMIT and similar
languages, 1t is cumbersome to express some of the operations
which are expressed quite easily 1s LISP, especlally those which
depend strongly on the fact that 1lists can contalin sublists to
unlimited depth. An obvious solutlion to this difficulty is to
provide both types of .anguage capability within the same pro-
gramming system.[5] For example in LISP, a programme.' might use

(FLIP (REVERSE W) '($ $3 'A $'B $1 $) '(#1 #6 #4 'C #2 #7))

to transform the reversal of the list W according to the above rule.

The philosophy behind such an extension in the syntax of LIS? 1s
similar to the motivation for allowing ALCOL type statements

to augment the older LISP 1.5 notation. We do not extend the
semantics of the language, but rather provide a capability which
vastly simplifies the construction of certain types of programs.(5]

Some Preliminary Considerations

Let us consider an example of a transformation tnat is suitable
for FLIP and arises from actual usage: the expansion of a FOR-
statement for LISP,.




The FOR-statemert of ALGOL al'ows the programmer to specify a
considerable rangc of iterat.ve operations in a compact fcrm. It

would be a powerful syntactic extension to LISP. However, it would

not represent a semantic extension, hecause the corresponding

operations could be programmed directly using PROG statements

with appropriate control loops. For example, 1f a programmer

wished to form the sum of alil positive numbers in a list L, he
might write using the FOR-statement:

(FOR X (IN L) (UNLESS (LESSP X 0)) (SETQ SUM (PLUS sUM)))
or he could write

(PROG (Y) (SETQ Y L)
LOOP (COND ((NULL ¥) (RETURN NIL))
((LESSP (CAR Y) 0) NIL)
(T (SETQ SUM (PLUS SUM (CAR Y)))))
(SETQ Y (CDR Y))
(GO LOOP) )

which would perform the same opeiation.

FOR would be implemented as a function for a LISP interpreter.
However, when compiling a function containing a FOR-statement,
the function will run much more efficiently if the FOR-statement
is compiled "open", i.e. is transformed into an equivalent PROG
which Is then compiled.

There are two observatlons to be made concerning the FOR state-

ment. iirst, it 1llustrates a practical use for a facility sucn as

FLIP. Exparnding the FOR statement involves determining which of
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several alternative patterns the statement matches, and constructing
the appropriate PROG. In other words, it involves a transformation
similar to, although more complicated than, the ones we have been
discussing. If it were possible to express such transformations

in straightforward way, perhaps by one rule, and - here 1is the
second observation - if this did not cause (significant) degradation
in the performance of the compller, from the standpoint of running
time or space, then a considerable amount of programming effort
would be saved in the ccnstruction of the LISP compiler itself.
However, such a facility would be orf 1llttle or nc use at all if it
involved a high overhead. The thing that makes the FCR statement
useful - and used by programmers 1is the fact that it does not cost
anything, and it simplifies programming, with the first consideration
outweighing the second. If the FOR statement were implemented in

a different, less efficlent way, or example interpretively via a
call to a function FOR at run time, then although this feature
would still simplify programming, most experierced programmers
would prefer to write thelr own iterative loops because of the

grea“er efficlency.

It has been my goal 1in developing FLIP to prodvce a facility that
not only would bte useful, but one which would be used. This has
entalled develoring a compact, yet fairly powerful notation for
describing transformatioas, and a very efficient imnlementation of
these transformations. One of the central considerations has bheen
that the user should not ftave to pay for options which he does not
use. In other words, simple transformations must nave a simple
notatlional representation, and run fast. Esoteric options which
slow down the operation of the pattern matching because of the
possibility of their being used are rnot d2sirable for our appli-
cations. With respect to efficliency, FLIP includes features which

sl
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allow the nrogrammer to exercise some degree of control over the
manne~ in which the matching portion of {he operation 1s carried
out. However, even where this control is nct exercised, a con-

siderable amount of buillt in optimization insures the programmer
of an efflcient cperation.

-6-
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SECTICN II
THE FLIP FORMALISM

A transformation in FLIP consists of two independent processes.
The first 1s a parsing, ur segmentatlon of the input structure
according to some pattern. This is called the mat hing process.
The seconu 1s a construction of a structure utilizire this parsing
and some fcrmat This is called the construct!: > process. A
transformation is usually specified by a single pa.tern and format.
The value of the t{ransformation is NIL if the input list does not
match the pattern, otherwise it 1s the result of the construction.
It 1s possible to use the matching process as a pure predicate to
test the form of an input. In that case a format 1s not required.
One can also perfc—m several constructions using a single parsing.

In the discussion that follows, the matching and constructing
ocperatlions are treated separately because of thls independence.

A. Control Mechanisms

Since FLIP is embedded within LISP, 1t does not have its own
control mechanism., In COMIT, SNCBOL, etc., this is the section
of the language devoted to the flow of control between the trans-
formatlons or rules, and its dependence on the success or failure
of the matchling orocess used to find the parsing. Several
different useful executive programs have been written in LISP to
facilitate using sets of rules, for example,

L. Repeat use of each rule until it (the match) fails, and then
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go on to the next,

2. Every time a rule is successful go bacx to the top of the se%
of rules. On fallure go to the next rule,.

3. After a match, control goes to a specified labelled rule.
(This is very similar to the COMIT control mechanism.)

One control program, TRANSFORM, ls described in Section IV, Others
are easy to write since the user can call the matching and con-
structing functic:. Zirectly.

B. The Matching Process

The purpose of the matching process is to cdatermine whether or
not the input 1list 1is an ins%ance of a particular input pattern.
If it is, the matching process 1s designed to tell us this and
also to yleld a parsing of the 1list with respect to this pattern.
This parsing can then be used by the construct process to builld

new list structures.

The input pattern 1s a list of elementary patterns. Each of these
must match a portion of the input list, or else the entire pattern
will not match the list. Furthermore, there must be no gaps in
the 1list, i.e. these portions or segments as they will be called,
must together, and taken in order, make up the entire list. This
set of segments will then constitute the parsing of the list.

As an example, let us conslder a pattern composed of the following
three elementary patterns:

$ which matches anything

$n where n 1s a number, which matches a segment of length n
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X which matches x, 1.e. a segment of lengtn 1 consisting of
a single item equal to (the value of) x.

For the pattern

($ $3 'A $ 31 'B $)
and the 1list

(AWXYZABCDEBC!),

the parsing would be:

(Aw]l [xYy2z] [A] [BCD] [E] ([B] [C D]

where each segment ccrresponds to one elementary pattern. Note

that 'A did not match the first A, because the $3 pattern must

first find a scgment of length 3. The first $ matches the segment
up to “he beginning of that matched by the $3. Similarly, 'B does
not match with the first B after the second A because there must

be at least 1 item between them to satisfy the $1 pattern. Finally,
note that if the $ at the end of the pattern were not present, ituon
there would be no match because there 1is no way for the segments

of the match to make up the entire list.

Elementary Patterns

$, $n, and a variable are prototypes of three of the elementary
patterns available in FLIP. Each of these patterns, as well as
the ones we will encounter below, can be embellished considerably
with various options. For tutorial purposes, we have chosen first
to present each elementary pattern in its simplest form, as was
done above, and then to introduce gradually the extensions and
generalizations that are permitted. However, a complete summary

of both the FLIP syntax and semantics may be found in the appendices.

aiiand it
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The Variable Pattern

The variable pattern, or var for short, is so named because 1in 1it.
simplest form it matches wit. the value of some varliable. Actually,
var matches with the value of any LISP computation which includes
variables as well as other more complicated expressions. In the
above example, thls computation was 'A, which 1s short for

(QUOTE A). The value of this computation 1s simply A, and so this
elementary pattern matched with A. If the value of X were A, then
the pattern ($ $2 X $§ 'B $1 $) would match identically with the

one glven above.

If X 1s a variable which has as its value the 1ist (3 4 5), then
the pattern ($ X $) matches the 1list (1 2 3 4 5 6 (1) (2 3) (3 4 5)
(6)) with parsing

(123456 (1) (23)][(345)][(6)]

Suppose we wanted X to match with the segment [3 4 5] rather than
the item (3 4 5), which 1s a sublist of the original 1ist. We
indicate this 'y using the prefix operator "*" and write ($ *X $).

The parsing would then be
(1 2] [3 4 5] [6 (1) (2) (3 4 5) (6)]

Just as ($ X $) 1s identical to, in this case, ($ '(3 4 5) $),
($ *X $) 1s identical with ($ *#'(3 4 5) $). This latter pattern
also will match the same list as the pattern ($ 3 4 5 $). How-
ever, ($ 3 4 5 $) produces the slightly different parsing:

(1 2] [3] (4] (5] [6 (1) (2) (3 4 5) (6)].

pecause it contains 5 elementary patterns instead of 3.

-10-
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Variables and quoted expressions are two types of LISP compu-
tations. To indicate that a match 1s to take place with some
other LISP computation, the prefix operator "=" is used.* For
example, one can write

($ =(CAR (GET (QUOTE NAME) (QUOTE PROPERTY}))) $)
or
(% =\PROG (X Y) ... (RETURN X)) $),

etc. 1In general, the elementary pattern =X matches a single
element equal to the value of X, which is computed during the
course of the match. To indicate that a match occurred with a
cegment of a list, we use the prefix operator "*", as before, and
write *=X, where X is a LISP computation.

To refer back to items or segments already matched in the parsing,
a special type of var called a mark is provided. For example, the
pattern

($ $1 ¢ #2 %)

will match a 1list with two 1identical elements. For the 1list
(ABCDETFGB X), the parsing would be

(Al [(B] [Cc D E F G] [B] [X]

Irn this example, #2 1s a mark; it refers to the second elementary
pattern, namely $1, and it matches with the identical item or
segment that the $1 elementary pattern matched. For the list

¥ Actually, the "=" operator may be used for all LISP computations

including variables and quoted expressions. However, since these

two types occur so frequently, special allowance 1is made for them
J the "=" operator can te omitted.

-11-




(ABC(BC)DE (BC)BCF) and the pattern ($ X $ #2 $),
where X has the value (B C), the parsing is:

(ABC]l [(BC)] [DE] [(BC)] [BCF]

A mark always matches identically with the elementary pattern
to which it refers. If for the same input list and value of X ']
as above, we use the pattern ($ *X $ #2 $), then the parsing
would be: l]

[A] (B C] [(BC)DE (BC)] [BC][F].

In this case, the mark matched with a segment [B C] instead of
an item, [(B C)].

A mark can also be used in a computation. In this case it has

the value of the segment matched by the elenentary pattern to

which it refers, or in the case that this pattern matches a single
item, its value 1s that item. For example, we can write

($ $3 $ =(CADR #2) $) which matches with (A B C D E C G) producing
the parsing [A] [B ¢ D] [E] [C] [G]. The pattern ($3 *=(REVERSE #1))
will match with the list (A B C C B A) producing the parsing

(A BC] [CBA]. Note that ($3 =(REVERSE #1)}), will not match

with (A B C C B A); 1t will match with (A B C (C B A4)).

Sometimes for long patterns such as ($ 'A $ 'B $§ $1 $ #6 $),

it is easier to read and write the patterns 1f we allow the mark

5> count backwards from its position, writing ($ 'A $ 'B $1 $ #-2 3).
Both of these patterns will "find" the first common elements
following the first B that follows the first A.

We can also write #X to denote the Xth element of the parsing,

where X is any LISP form that evaluates to a number. Similarly
we can write $X denote a segment of length X. Here it is

-12-
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important in order for the $ to be recognized as a prefix
operator that there be no space between 1t and the X. For

example, ($ X $§) 1is not the same as ($X $), nor 1is ($ .(CAR X) $)
the same as ($(CAR X) $).

Summar

The three elementary patterns discussed so far are:

$ which matches anything

$X where X is a computation whose value is a nonnegative
number N; matches a segment of length N

=X matches a single element equal to the value of X
X where X 1s atomic; same as =X
‘X same as =(QUOTE X)

¥=X matches a segment equal to the value of X

#X where X is atomic; same as #=X
#'X same as #=(QUOTE X)

#X where X 1s a computation whose value 1is a number N;
matches ith the same thing matched by the Nth elementary
pattern. If N 1s positive, numbering proceeds from the
front of the pattern, left to right. 1If negative,
numbering proceeds from position where #X appears,
right to left. (Note: IN|<position #X)

Predicates

Suppose we wanted to parse a list finding the last A before the
first B. The pattern ($ 'A $§ 'B $) is not sufficient, because

with the 1ist (A Z A Y A B C), for example, there are three
possible parsings,

-13-
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(] [A) [Z A Y A] [B) [C];
(A 2] [A] [Y A] [B] [C]; and
(A 2z A Y] [A) (] [B] [C]

corresponding to the three different occurrences of A. While the
last parsing 1s the one desired, FLIP and most other pattern
driven languages would produce the first parsing, simply because
it 1s the first one found.

One way to produce the last parsing 1is to restrict the segment
that tne first $ matches by requiring that it not contain an A.
This 1s done in FLIP by means of a LISP predicate.

We write for the above pattern
($ "A $[NOT (MEMBER 'A *)] 'B $)

By definition, $[X] matches anything for which the value of (X)
is T.

To reference in X the segment currently matched by the $, you can
use the variable "#" as 1., the above example.

Predicates can also be used with the $N pattern and the VAR
pattern. Consider

($ $1[MEMBER * '(AE I O U)y ¢ $1[NOT (MEMBER * #1)] $)

Given the 1list (X Y Z I X M N), the parsing produced is
(X vy 2] (1] [X] (M1 [N].

Let us consider another example using predicates. We can write $X

to match a segment of length X - suppose we wlish to match a
segment with a length between two bounds? Here we must use a predicate.

1l
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($ 'A $[AND (TESSP(LENGTH *) 5) (GREATERPF (LENGTH *) 1)] 'B $)

matches with (A B CDE A X B B )giving [A B C D E] [A] [X B] {B] [].

Subpatterns

Predicates provide a means for calling the matching procedure
recursively. For example, we could require that a 1list match with

a given pattern by using the elementary pattern: $1[MATCH * PATTERN].

However, a more direct way to achieve this 1is by means of a
subpattern. A sub»jattern 1s an elementary pattern that matches a
list in the samme way that the top level pattern matches the top
level 1ist. For example, given the list

(A {BC)D(BETF)G)
and the pattern

($ ($ 'F $) $),

a match will occur with the subpattern ($ 'F $) matching the
list (B E F). One of the advantages of using tne subpattern over
a predicate is that the parsing produced by the recursive call
to match is saved in the top level parsing. Thus the complete
parsing for the match above would be

(A (B C) D]

{ [BE]I[F]I]]

[G]

This sub-parsing can then be referred into by.other elementary
patterns. For example,

($ (3 'B $1) $ #[2,3] %)
matches with

((ABC) (ABD) (ABE) AETIOU)

-15-




producing the top level parsing

[((ABC) (ABD)] [(AaBE)] [A] [E] [I 0 Ul.

Here #[2,3] refers to the third elemen! in the second element

in the parsing. When this elementary pattern 1s encountered,
the second element in the parsing is found and, treating this as
a parsing, the third element in this lower parsing is fourd. A
match will then be made with the same item or segment matched by
this element.

Since the mark notation using brackets 1is treated similarly to

that without brackets, the numbers 2 and 3 in the example above
could have been replaced by arbitrary computations, and similarly
negative numbers could have been used. Tne notation #2 is
equivalent to #[2]. The former is merely a convenient abbreviation.
Similarly, marks using bracket notaticn can be employed in arbi-
trary LISP computations.

It 1s not necessary to refer into parsings produced by subpatterns;
items matched by subpatterns can be referred to by MARKS in the
same way as any other matched item. Thus the pattern
($ ($ 'B 'D) $ #2 $) will match with the list

((ABC) (ABD) (ABE) (XBD) (ABD) (ABC))
producing the top level parsing

((ABC)]J[(ABD)] [(ABE) (XBD)][(ABD)] [(ABC)]
Note that #2 did not match with (X B D) even though ($ 'B 'D)

could have matched with it originally. #2 matched with (A B D),
as did ($ 'B 'D) earlier.

-16-
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If a MARK is used inside of a subpattern, it 1is evaluated using
that subpattern's parsing. For example, in the pattern

($ ($1 $ #1) $), the #1 refers to the $1, not the first $, and
thlis pattern will match with

((ABC) (DEPF) (GHG) (I JK))
to produce

[(ABC) (DEF)] [(GHG)] [(TJK)IJ.
If 1t 1s necessary to refer to the parsing outside of the current
varsing, one uses the full MARK notation, with brackets, and
heads this with the special token "4". For example

($ $1 8 ($ #04,2] $) $)
matches with

(ABC(DEF) (GHI) (XYC)),

with the $1 matching C. The " 4" denotes that counting begins
with the top level parsing.

As with the case of VARs, a subpattern can be used to match a

segment as well as an item. This is also indicatecd by the prefix
operator "#", Thus we can write

($ $3 *('A $ 'B) $1 §)

as a pattern which matches with the same 1lists as those matched
by the pattern

-17-
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($ $3 'A 3 'B $1 %).

However, the first parsia, will contain orly rive elemen:s, since
thers are only five elementary patterns. The second parsing will
of course contain seven elements. Furthermoire, if #3 appears in
the first pattern (at the top level) it will refer to the entire
segment running from A through B, since this is what 1s matched
by the third elementary pattern in that paivtern. #3 appearing

i1 the second parsing would refer to the single item A.

Finally, a subpattern cen be computed. This is indicated by the SR
prefix operator ":". Thus we have for the subpattern:

e matches a single item, 2 list, that matches, in the
sense described above, the value of X treated as a
pattern.

X where X 1< a 1list, same as :'X

¥:X matches a segment that matches in tae sense described
above the value of X treated as a pattern

*X where X is a 1iist, same as *:'X

EITHLER Pattein

The EITHER eiementary pattern provides a means for defining a
match of one of several alternatives. The general form for the
EITHER pattern is

EITHER{El; E2; E3; ...; En]

-18-




Each EL 1 a sequence of elementary patterns. EITHER attempts to
find a match with a segment of the 1list using first El, and if
that falls, then it tries with E2, etc. For example, the pattern

($ EITHER[A' $1; 'B $2; 'C $3] 'D $)
matches with the 1list

(XYZABCDETFTDGQG)
procucing the parsing

(XY 2] [CcDEF] (D] [G].
The element corresponding to the segment [C D E F] matched by the
EITHER aiso contains the parsing [C] [D E F] corresponding to the
two elementary patterns in the third alternative, the one that
matched. This 1s similar to the treatment of subpatterns

described earlier.

As an example of the us2 of an EITHER pattern, consider the
following definition of an integer.

digit = EITHER[1;2;3;4;5;6;7;8;9;0]

integer = EITHER[*:digi*;*:digit ¥*:integer]
With these two varilatles deflned, we can use the pattern
%¥.4nteger to determine whether a 1list matches th2 Backus normal

form definition of integer given in the above two rules. For
example, the pattern
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($ 'A *:integer ‘B $)
matches with the 1list
(XYZA1WPA326BC)
produci g the parsing
[xYyzal1ws] ([A) [326] [B] [c]. -
(Admittedlyr this is not the most efficient way to find integers.)
If any of the Ei's are empty, then, the EITHER patitern can match |
with a null segment of the list. Thus the pattern - I
($ 'A EITHER ('B $1; 'C $2;] $)
matches with the 1list (X A Y) producing
(x]J (A [J [Y1.
Here, the third (empty) alternativ~ was used.
If a mark is used inside of an EITHER pattern, it 1s evaluated
using the EITHER pattern's parsing, much the same as with the
subpattern. For example, the pattern
($ EITHER[$1 'B #1; $1 #1] $)

will match with the 1list

(ABCDBDE)
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using the f{irsc alternative. To refer to elements outside of the
EITHER pattern's domain from inside of 1t, use the mark notation
with brackets and . Similarly, the EITHER pattern's parsing may
be referred into using the mark notation witbh brackets. For

example,

($ EITHER['B $1; 'C $1 $1] #[2,-1] $)
will match with the list

(ABCDEEG),
with the second alternative being used.

The REPEAT Pattern

The REPEAT pattern allows one tu match with a repetitive pattern.
The general form for this elementary pattern is REPEAT[E], where
E is a sequence of elementary patterns. REPEAT will match zero
or more occurrences of this sequence. Thus tne pattern

('A REPEAT['B $1])
will match with the lists

(A), (ABC), (ABC B D), etc., but not with

(ABCBCE), although

('A REPEAT['B $1] $)

would match with the latter list. As with the case of the
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subpattern and EITHER elementary pattern, the parsings obtained
by REPEAT as 1t matches are retalned and available during the

ccurse of the match and construct operation. Similarly, marks
used inside of the REPEAT pattern refer to the parsing of the

current repetition. For example, the pattern
(REPEAT{$1 $1 #1]) will match with the list

(ABACDCETFE).

To refer to elements outside of the REPEAT pattern, marks with
brackets and + must be used.

The REPEA. pattern may take two optional arguments, N1 and N2.

If N1 is present, the REPEAT pattern must match at least N1 times.
If N2 is present, the REPEAT will match at most N2 times. For
example, to match a segment containing from 1 to 6 letters (say

a representation of a FORTRAN variable) one can use:

REPEAT({$1[LETTER *] / 1 6]
where LETTER 1s a predicate which is true for letters.
The general form for REPEAT 1is thus:

REPEAT[E / N1 N2 where the value of N1 and the value

of N2 are both numbers, matches a
segment of a list which matches
repetitively the 1list of eiementary

patterns E at least N1 times and not
more than N2 times.
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REPEATIE / N1] same as REPEAT{E / N1 N2] where
N2 1s effectively infinite.

REPEAT[E] same as REPEAT(E / O]

The SET Pattern

The SET elementary pattern might more properly be called a
pseudo-pattern, because it does not affect tre match. The SET

pattern is used to assign a v..lue to a variable during the match.
There are two forms for the SET pattern. The first, (SET X Y),
where Y is some LISP form, asslgns the value of Y to X. The
second form is X« Y, where Y is some elementary pattern. 1In this
case X 1s set to whatever the elementary patiern matches. Thus

the effect 1s the same as writing in a pattern Y followed by

(SET X #-1). Note: Since this elementary pattern does not match

and does not affect the parsing, it should be ignored when com-

puting MARKs. Thus ($ (SET X Y) $1 $ #2 $) will match two common
elements, the #2 referring to the $1.

Example

We are now ready to try a more complicated example. In LISP

applications, one frequently wishes to locate a balanced pair of

brackets in a string of tokens. Let us consider a general FLIP

pattern which finds the first balanced string following the unique
token LABEL, where the bounding tokens are variables; e.g. they

could be BEGIN and END, or "[" and "]", etc. Let us refer to these
tokens by the variables OPEN ard CLOSE. The general idea is to
find the first OPEN after LABEL and increment a counter one for

each OPEN, and decrement the counter for each CLOSE until the
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count 1s zero. The pattern used 1is:

(S LABEL § OPEN (SET N 1)
REPEATLEITHERCOPEN (SET N (ADDI N))3
81 INOT CEQ * CLOSE))}

(SET N (SUB1 NJ) S$I1CNOT (ZEROP N)J1J]
$)

After the REPEAT pattern has matched, N will be zero, and the
segment matched will consist of the balanced string excluding the
initilal OPEN and final CLOSE. Suppose we wish, however, to bind

B
the variable FOO to this entire balanced string. Then we mighu
write

($ LABEL $ FOO~*(OPEN (SET N 1D
REPEATCEITHLRIOPEN (SET N (ADD1 NJ)i3
$1[NOT (FQ +~ CLOSE)>3
(SET N (SUB1 N)) S1INOT (ZEROP nN>113 CLOSE

—

After this pattern has been matched, the value of FOO will be the
segment from the first OPEN after LABEL to its matching CLOSE.
Note the use of the subpattern consisting of four elementary
patterns: a VAR, SET, REPEAT and another VAR.

C. The Construct Process

The purpose of the Construct Operation is to construct a new list
structure using a format and a parsing from a match. Since the
flavor of Construzt 1is similar to that of Match, and Construct
uses many of the same LI3SP functions as Match does, we will
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discuss it in less detail.

The inputs to Construct are a representation of the parsing found
by Match, and a format. This irormat 1s a list of elementary
formats, which are evaluated sequentially from left to right,
their values being attached to the 1list structure under con-
struction as specified below. For example, to perform the trans-
formation on page 3 we mauch with ($ $3 'A $ 'B $1 $) and
construct with (#1 #€ #4 'C #2 #7).

VAZR

TARF 1s the elementary format that corresponds to the elementary
pattern VAR. 1Its value is computed and attached at the end of
the 1list structure under construction as an ite., or, if the
prefix "*" is used, as a segment. A MARK is attached as an item
if the elementary pattern to which it refers matched as an item,
otherwise as a segment. Negative numbers are permissible in
MARK's used 1n the construct process; they refer to elements by

a count from the right end of the parsing moving to the left.
Thus the format (#1 #-2 #U4 'C #2 #-1) is equivalcnt to the format

above.

=X X 1s evaluated and attached as an item at the end
of the 1list velng constructed, i.e. effect is the
same as APPENDing (LIST X) tc this structure.

X where X is an atom, same as =X
'X same as ='X, or =(QUOTE X)
k=X X is evaluated and attached as a segment, i.e.

APPENDing X.

X where X 1s an atom, same as ¥*=X
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LD ¢ same as ¥='X or ¥=(QUOTE X)

#X,#(..] the elementary pattern referred to is located in
the same way as in the match and then the item or
segment 1t matched 1s attached appropriately to
the list being constructed.

Subformats

The subformat correspcnds to the subpattern elementary pattern.
It is a 1list of elementary formats which are ured to construct
a new list in exactly the same way as top level elementary
formats are used to construct a list. This gublist is then
attached to the 1ist being ¢ -~structed either as an iten or as
a segment, as specified. S..lormats may be computed; this 1is
indicated by the prefix operator ":". Subformats may be used
within subformats.

X X is evaluated and treated as a format. It is
uscd to construct a list which is then added to
the next higher level list as an item.

X where X is a 1list, same as :'X

. X X is evaluated and treated as a format. It 1is
used to construct a list which 1s then added to
the next higher level list as a segment.

Y where X is a list, same as *:'X
EITHERF

EITHERF is the elementary format corresponding to tn. FEITHER
pattern. It svecifies the selection of an alternat ve format
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to use for construction depending on which alternative in the
match was used. Its general form 1is

EITHER[El; E2; E3: ..: En / X]

where each Ei1 1s a sequence of elementary formats and
X is a computation, usually a MARK, whose value must
te a parsing corresponding to some EITHER elementary
pattern. The format Ei corresponding to the chosen
Ei in the EITHER pattern is used 1n construction.

Comments

1. E1i may be empty.
2. During the course of the construction using Ei1, the current
level parsing is that of the EITHER elementaryv pattern. This
means that any MARKs not employing 4 will be cvaluated with
respect to the EITHER parsing. Thus, 1f one matches the list
(VYACDETFG) with
(3 'A EITHER{'B %1: 'C &1 351] $)
and constructs with
(#1 #2 EITHER[#2; #3 / #3] #u)
the resuit 1is

(XY AEF G).

3. If X is not present, then the last EITHER (furthest right)
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at the current level parsing 1s used. Thus, in the above case,
"/ #3" could have been omitted. If no EITHER parsing is found,
an error occurs.

REPEATF

REPEATF is the elementary format corresponding to the elementa»y
pattern REPEAT. 1t specifies the iteration of a number of con-

struction operations, the exact number being the number of times
the corresponding REPEAT matched. Its general form 1is

REPEAT(E / XJ where E is a sequence of elementary formats
and X 1s a computation, usually a MARK,
which must produce a parsing corresponding
to a REPEAT elementary pattern.

Comments

1. X may be omitted. In this case, the last (furthest right)
REPEAT of the current level parsing is used. If none 1s found,

an error occurs.

2. Durinz the construction with E, the current level parsing is
that of the corresponding parsing in the REPEAT elementary pattern,
i.e. for the nth iteration of E, the nth match of the REPEAT

pattern. Thus to delete every third element in a 1list, match with

(REPEAT([$2 $1] $),
and construct with

(REPEAT([#1 / #1] #2)
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or simply
(REPEAT[#1] #2).

3. The value of X may be a number. In this case, the format E

is repeated that number of times, and the current level parsing

1s the same as that when the REPEATF was entered. Thus to convert
(ABCDE)into (AAABBBCCCDUVDEEE),

match with
(REPEAT[$1]),

construct with

(REPEAT[REPEAT[#1 / 31]).

The flirst REPEAT corresponds to the REPEATed pattern. The
second one 1s executed 3 times for each time the REPEAT pattern
matched, and #1 1s the corresponding $1, etc.

4y, It is possible to match with
(REPEAT[EITHER['A $1; 'B $1]])
and construct with

(REPEAT[EITHER[#2 #2; #2 #2 #2]1).

Hiere the alternative format 1s selected accordin, to which EITHER
matched on the corresponding iteration of the REPEATed format,
and the #2 1s evaluated against the parsing of EITHER. This
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transformaticr will produce

(XXYYY2Z2Z2Z2XX2Z222)

from

(AXBYAZAXB?").

In addition to these elementary formats, there is an assignment
statement available in ccnstruct similar to that in match. This
may be written either as (SET X Y) or X«elementary format. In
the latt~zr case, X 1s assigned the value of the elementary fcrmat.
In both cases, the assignment statement does not affect the list
being constructed.

Example

We are now in a position to write the transformation for the
FOR-statement expansion described earli»r. The general form of
the FOR-statement we are using is:

(FOFR. loopvar loopcontrul whilephrase wunlessphrase statement)

where

loopcontrol = (LOOP X)
or (RESET X Y)
or (IN X)
or (ON X)
or (STEP N I)
or (STEP NI FN M)

whilephrase = (WHILE X)
or empty
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unlessphrase = (UNLESS X)

or empty

where X and Y are artitruary forms, N, I, M are forms that
evaluate to numbers, and FN is a function.

If loopcontrol is (LOOP X), loopvar is initialized to X. TFor
RESET, 1t 1is initialized to X at the star! of the loop anc reset
to Y after each iteration. (ON X) indicates that the loopvar is
to be cycled through the 1ist X. It makes the FOR-statement :
work in a manner similar to the LISP function MAPLIST, setting

loopvar to successive tails of the 1list X. (IN X) sets loopvar

to successive elements of the 1list X. Finally, STEP specifies

a numerical loopcontrol. In the first case loopvar 1s initialized

to N and incremented by I after each iteration. ~No oprovision 1is
made for termination of the loop. .n the second case, the loop
terminates when {f#N X M) 1s true. For example,

(STEP 1 1 (GREATERP 10) will cause 10 iterations with locpvar be-
ginning at 1 and going to 10.

Regardless of which loopcontrol is used, the WHILE phrase, allows
the user to specify a termination cordition for the loop, and the

UNLESS phrase specifies exceptions for which the statement is not
to be executed.

The definitlon of FOR 1s glven below. No'e that the EITHER

pattern allows a compact treatment for the various loop control

cases. In partirular, the two STEP cases and the IN and ON cases

can be treated together, .

Following the derfinition are six examples of expansions produced
by FOR. The first two examples using LOOP and RESET both return
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T for lists of even length and NIL for lists of odd length. The
third example using IN prints all atomic elements 1n a list L,
and the fourth example using ON prints all but the last four
eiements in L. The last two examples, using STEP, compute the
sum of all odd integers less than N. The output was produced
using a special print program_  PRETTYFLIP, described on page U43.
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PRETTYFLIF (C(FOR))

(FOR
(LAMBDA (X) (FLIP
X
*C*'FOR LOOPVAR*~$1 (EITHERC'LOOP <13
'RESET $! 813
EITHERC'INS
'ON]) $13
'STEP $1 351
EITHERCSt $13
1D

EITHERCC*WHILE $1)3
]
EITHERC(*UNLESS 35t)3
]
$1)
'((SET LOOP (GENSYM)) (SET LOOP1 (GENSYM))
(S5ET EXIT (GENSYM))
*PROG
EITHERICNIL LOOP (°'SETQ LOOPVAR #2);
NIL ('SETQ LOORPVAR #2) LOOP;
(PROGVAR*~=(GENSYM)) ('SETQ PROGVAR #2) LOOP
(*COND ((C°'NULL PROGVAR) ('GO EXIT?))
('SETQ LOOPVAR EITHERC ('CAR PROGVAR)3
PROGYAR1)3
NIL ('SETQ LOOPVAR #2) LOOP
EITHERCC('COND ((#1 LOOPVAR #2) ('GO EXIT>))s
J 7 #035111 ’
ZITHER[C'COND (C'NULL #C1,21) ('GO EXIT)))s
/ #-3]
EITHERUC'COND (¢#(1,2] ('GO LOOP12))3
]
#-1
LOOP1
EITHERC3
('SETQ LOOPVAR #3)3
(*'SETQ PROGVAR ('COR PROGVAR))3
(*SETQ LOOPVAR (°'PLUS LOOPVAR #3)) /7 #(3,111]
(*'GO LOGP)
EXIT))))

(FOR)




(FOR X (L0OOP L)
(CONO
C(CNULL XD
(RETURN T3)
CCNULL (CDR X))

(RETURN NIL))
(T (SETQ@ X (CDDR X))

(PROG NIL
AQ17S (SETQ X L)
(COND
CINULL X)

(RETURN T
((NULL (CDR X))
(RETURN NIL)J)
(T (SETQ@ X (CDDR X))))
AQ176 (GO AQ175)
AG177 NIL
)

(FOR X (RESET L (CDDR X))
(COND
C(NULL X)
(RETURN T))
((NULL ¢CDR X))
(RETURN NIL))))

(PROG NIL
(SETO X L)
AQ20@ (COND
((NULL X)

(RETURN T))
CI(NULL (CDR X))
(RETURN NIL)J))
Ag231 (SETQ X (CDDR X))
(GO A2200)
Ag2p2 NIL
)
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(FOR X (IN L)
(UNLESS (NULL CATOM X))
(PRIN1 X))

(PROG (AQ2836)
(SETQ AQ206 L)
AD203 (COND
C((NULL ARN206)
(GO AN205)3))
(SETQ@ X (CAR A0206))
(COND
CC(NULL (ATOM X))
(GO AQ204)))
(PRIN1:X)
AD284 (SETQ A020é (CDR AD0206))
(GO AQ203)
AB205 NIL
)

(FOR X (ON L)
(WHILE (GREATERP (LENGTH X3
43)
(PRINT (CAR X))

(PROG (€AQ212)
(SETQ Af212 L)
AB207 (COND
C((NULL AG212)
(GO AN2113))
(SETQ X AN212)
(COND
((NULL (GREATERP (LENGTH X)
43)
(GO AB2113))
(PRINT (CAR X))
AP216 (SETQ AQ212 (CCR AB212))
(GO AQ207)
AB211 NIL
)
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(FOR X (STEP 1 2)
(WHILE (LESSP X N))
(SETQ SUM (PLUS SUM X))

(PROG NIL
(SETQ X 1)
AB213 (COND
C(NULL (LESSP X NJ)
(GO AQ215)))
(SETQ SUM (PLUS SuM X))
AB214 (SET@ X (FLUS X 2))
(GO AR213)
AB215 NIL
)

(FOR X (STEP 1 2 GREATERP.N)
(SETQ@ SUM (PLUS SUM X))@

(PROG NIL
(SETQ@ X 1D
AB216 (COND
((GREATERP X N)
(GO AB220)))
(SETQ@ SUM (PLUS sSuM X))
AD217 (SETQ X (PLUS X 2))
(GO AB216)
AB220 NIL
INIL
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SECTION III

IMPLEMENTATION

This section discusses FLIP as a larpe systems orosram, It may
help users to write more efficient FLIP prorramns bv explaininn
the way FLIP works, but it contains no rew information on the
lanmuare. It has been included for comnleteness, and beccause we
feel that much of the experience rained in ecxperimentins with and
using FLIP has been in the area of implementation, and mav be
transferrable to the desipn and construction of other large LISP

systems.

The section is divided into three marts. The first part discusses
the techniaue of translation. The second nart cdiscusses technlquces
for reducing the number of CONSes reauired. The third vart de-
scribes the oneration of the $ f.. ., which is responsible for
most of the search strateesy in the matching operatiorn. Thus the
first mart talks about ways of speedinsg up MATCIi and CONSTRUCT
before they are run. The second part talks about wavs of speedinrs
up MATCH and CONSTRUCT indirectly by reducing garbarme collection
time, and tih: third nart talks about ways of speeding un MATCH
while %t i< running, by a more efficient search.

A. Translation

Each of the elementary patterns and formats in FLIP have been
implemented by a sirpgle LISP function. There is a functlon called
3, and another function called VAR, etc. Althoursh there are a
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number of opntions with which each elementary pattern or format
can be embellished, for example, VAR can be made to match a seg~
ment or an item, and may or may not include a predicate, there is
still sufficient similarity in the tasks performed to permit only
one function.

However, gziven any input pattern or format, there i1s still the
problem of determininp, which functions are to be called, and with
what arruments. Since each of the seven elementary ratterns dis-
cussed earlier come in a variety of forms, a certain amount of
computation must be done to decide exactly which elementary pat-
terns, and elementary formats, are represented in a given pattern
or format. This i1s the task of the translators.

The purpose of translation is to do as much of the wcrk of inter-
preting FLIP entities as possible, before the programs are run,
and to do this work only once. This is similar to the philosophy
of compilation. However, unlike compilers, the FLIP translators
do not produce machine instructions, but a sequence of LISP forms,
i.e., LISP functions with arguments. These forms correspond to
the individual functions which carry out the operations specified
by each elementary pattern or format. The arguments to these
functions indicate the options utilized. Since each of these
functions are themselves compiled, there is a minimum amcunt of

internretation at run time.

As an example, consider the nattern

($ 'A $1[NOT (MEMBER * #1)] *=(REVERSE #1)).




et el Ged ) md O

bod

ot

The translation of thi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>